Олимпиадные задачи из источника «2. Монетки» - сложность 2-3 с решениями

На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.

а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре? б) Тот же вопрос, если и тех, и других монет - по 12.

Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре?

В Монголии имеются в обращении монеты в 3 и 5 тугриков. Входной билет в центральный парк стоит 4 тугрика. Как-то раз перед открытием в кассу парка выстроилась очередь из 200 посетителей. У каждого из них, а также у кассира есть ровно 22 тугрика. Докажите, что все посетители смогут купить билет в порядке очереди.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка