Олимпиадные задачи из источника «18. Раскраски»
18. Раскраски
НазадПлоскость раскрашена в два цвета, причем каждый цвет использован. а) Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 2006 м. б) Докажите, что найдутся две точки разных цветов, расстояние между которыми также равно 2006 м.
Прямая раскрашена в два цвета. Докажите, что найдётся отрезок, оба конца и середина которого покрашены в один и тот же цвет.
Раскрасьте рисунок в четыре цвета так, чтобы соседние части были покрашены в разные цвета. б) Можно ли обойтись тремя цветами?<div align="center"><img src="/storage/problem-media/105193/problem_105193_img_2.jpg"></div>
В квадрате 7×7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по три закрашенных клетки.
Квадрат4×4 разделён на 16 клеток. Раскрасьте эти клетки в чёрный и белый цвета так, чтобы у каждой чёрной клетки было три белых соседа, а у каждой белой клетки был ровно один чёрный сосед. (Соседними считаются клетки, имеющие общую сторону.)
Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.