Олимпиадные задачи из источника «1999 год» для 2-9 класса - сложность 1-3 с решениями
Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. Описанная окружность треугольника <i>AOB</i> касается прямой <i>BC</i>.
Докажите, что описанная окружность треугольника <i>BOC</i> касается прямой <i>CD</i>.
2<i>n</i> радиусов разделили круг на 2<i>n</i> равных секторов: <i>n</i> синих и <i>n</i> красных, чередующихся в произвольном порядке. В синие сектора, начиная с некоторого, записывают против хода часовой стрелки числа от 1 до <i>n</i>. В красные сектора, начиная с некоторого, записывают те же числа, но по ходу часовой стрелки. Докажите, что найдётся полукруг, в котором записаны все числа от 1 до <i>n</i>.
Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой коробки так, что все цвета будут представлены. Докажите, что число способов такого выбора есть ненулевая степень двойки.