Олимпиадные задачи из источника «1985 год» для 11 класса - сложность 1-4 с решениями

а) Привести пример такого положительного <i>a</i>, что  {<i>a</i>} + {<sup>1</sup>/<sub><i>a</i></sub>} = 1.

б) Может ли такое <i>a</i> быть рациональным числом?

В пространстве расположены 2<i>n</i> точек, никакие четыре из которых не лежат в одной плоскости. Проведены  <i>n</i>² + 1  отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют

  а) хотя бы один треугольник;

  б) не менее <i>n</i> треугольников.

За круглым столом сидят <i>n</i> человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?

Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка