Олимпиадные задачи из источника «1985 год» для 11 класса - сложность 1-4 с решениями
а) Привести пример такого положительного <i>a</i>, что {<i>a</i>} + {<sup>1</sup>/<sub><i>a</i></sub>} = 1.
б) Может ли такое <i>a</i> быть рациональным числом?
В пространстве расположены 2<i>n</i> точек, никакие четыре из которых не лежат в одной плоскости. Проведены <i>n</i>² + 1 отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют
а) хотя бы один треугольник;
б) не менее <i>n</i> треугольников.
За круглым столом сидят <i>n</i> человек. Разрешается любых двух людей, сидящих рядом, поменять местами. Какое наименьшее число таких перестановок необходимо сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели бы в обратном порядке?
Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.