Олимпиадные задачи из источника «1977 год» для 3-9 класса - сложность 1-3 с решениями
В волейбольном турнире каждые две команды сыграли по одному матчу.
а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.
б) Постройте пример такого турнира семи команд.
в) Докажите, что если для любых трёх команд найдётся такая, которая выиграла у этих трёх, то число команд не меньше 15.
В таблице размерами <i>m×n</i> расставлены числа – в каждой клетке по числу. В каждом столбце подчеркнуто <i>k</i> наибольших чисел (<i>k ≤ m</i>), в каждой строке – <i>l</i> наибольших чисел (<i>l ≤ n</i>). Докажите, что по крайней мере <i>kl</i> чисел подчёркнуты дважды.