Олимпиадные задачи из источника «Задачи для самостоятельного решения» для 7-9 класса - сложность 3-4 с решениями

Углы треугольника <i>ABC</i> удовлетворяют соотношению  sin²<i>A</i> + sin²<i>B</i> + sin²<i>C</i> = 1.

Докажите, что его описанная окружность и окружность девяти точек пересекаются под прямым углом.

Через центр <i>O</i> правильного треугольника <i>ABC</i> проведена прямая, пересекающая прямые <i>BC, CA</i> и <i>AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>.

Докажите, что одно из чисел <sup>1</sup>/<sub><i>OA</i><sub>1</sub></sub>, <sup>1</sup>/<sub><i>OB</i><sub>1</sub></sub> и <sup>1</sup>/<sub><i>OC</i><sub>1</sub></sub> равно сумме двух других.

Вписанная окружность треугольника <i>ABC</i> касается сторон <i>CA</i> и <i>AB</i> в точках <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>, а вневписанная окружность касается продолжения этих сторон в точках <i>B</i><sub>2</sub> и <i>C</i><sub>2</sub>. Докажите, что середина стороны <i>BC</i> равноудалена от прямых <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>B</i><sub>2</sub><i>C</i><sub>2</sub>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка