Олимпиадные задачи из источника «параграф 8. Вспомогательная площадь» для 8-11 класса - сложность 3 с решениями
параграф 8. Вспомогательная площадь
НазадРасстояния от точки <i>X</i>стороны <i>BC</i>треугольника <i>ABC</i>до прямых <i>AB</i>и <i>AC</i>равны <i>d</i><sub>b</sub>и <i>d</i><sub>c</sub>. Докажите, что <i>d</i><sub>b</sub>/<i>d</i><sub>c</sub>=<i>BX</i><sup> . </sup><i>AC</i>/(<i>CX</i><sup> . </sup><i>AB</i>).
Длины сторон треугольника образуют арифметическую прогрессию. Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.
Дан выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>n</sub>. На стороне <i>A</i><sub>1</sub><i>A</i><sub>2</sub>взяты точки <i>B</i><sub>1</sub>и <i>D</i><sub>2</sub>, на стороне <i>A</i><sub>2</sub><i>A</i><sub>3</sub> — точки <i>B</i><sub>2</sub>и <i>D</i><sub>3</sub>и т. д. таким образом, что если построить параллелограммы <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub>,...