Олимпиадные задачи из источника «параграф 6. Задачи о раскрасках» - сложность 3 с решениями

Несколько кругов одного радиуса положили на стол так, что никакие два не перекрываются. Докажите, что круги можно раскрасить в четыре цвета так, что любые два касающихся круга будут разного цвета.

Многоугольник разрезан непересекающимися диагоналями на треугольники. Докажите, что вершины многоугольника можно раскрасить в три цвета так, что все вершины каждого из полученных треугольников будут разного цвета.

Точки сторон правильного треугольника раскрашены в два цвета. Докажите, что найдётся прямоугольный треугольник с вершинами одного цвета.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка