Олимпиадные задачи из источника «глава 22. Выпуклые и невыпуклые многоугольники» для 1-10 класса - сложность 2 с решениями
глава 22. Выпуклые и невыпуклые многоугольники
Назада) Нарисуйте многоугольник и точку <i>O</i>внутри его так, чтобы ни одна сторона не была видна из нее полностью. б) Нарисуйте многоугольник и точку <i>O</i>вне его так, чтобы ни одна сторона не была видна из нее полностью.
Верно ли, что любой пятиугольник лежит по одну сторону от не менее чем двух своих сторон?
Докажите, что если существует фигура$\Phi{^\prime}$, площадь которой не меньше площади фигуры$\Phi$, а периметр — меньше, то существует фигура того же периметра, что и$\Phi$, но большей площади.
Докажите, что для любой невыпуклой фигуры$\Psi$существует выпуклая фигура с меньшим периметром и большей площадью.
На плоскости дано пять точек, причем никакие три из них не лежат на одной прямой. Докажите, что четыре из этих точек расположены в вершинах выпуклого четырехугольника.
На плоскости дано <i>n</i>точек, причем любые четыре из них являются вершинами выпуклого четырехугольника. Докажите, что эти точки являются вершинами выпуклого<i>n</i>-угольника.