Олимпиадные задачи из источника «глава 8. Игры» для 6 класса - сложность 1-5 с решениями
глава 8. Игры
НазадИгра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.
На окружности расставлено 20 точек. За ход разрешается соединить любые две из них отрезком, не пересекающим отрезков, проведенных ранее. Проигрывает тот, кто не может сделать ход.
Имеются две кучки камней: в одной - 30, в другой - 20. За ход разрешается брать любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.
В каждой клетке доски 11 × 11 стоит шашка. За ход разрешается снять с доски любое количество подряд идущих шашек либо из одного вертикального, либо из одного горизонтального ряда. Выигрывает снявший последнюю шашку.
Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.
На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй.
Двое по очереди ставят ладей на шахматную доску так, чтобы ладьи не били друг друга. Проигрывает тот, кто не может сделать ход. Кто выиграет?
Числа от 1 до 20 выписаны в строчку. Игроки по очереди расставляют между ними плюсы и минусы. После того, как все места заполнены, подсчитывается результат. Если он чётен, то выигрывает первый игрок, если нечётен, то второй. Кто выиграет?
Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?
Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?