Олимпиадные задачи по теме «Вспомогательная раскраска» для 2-5 класса
Вспомогательная раскраска
НазадНа поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба.
Какое наименьшее количество звеньев этой ломаной может совпасть с рёбрами куба?
Можно ли ходом коня обойти все клетки шахматной доски, начав с клетки<i>а1</i>, закончив в клетке<i>h8</i>и на каждой клетке доски побывав ровно один раз?
Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?
Все поля шахматной доски 8×8 покрыли 32 косточками домино (каждая косточка закрывает в точности два поля).
Докажите, что число вертикально лежащих косточек чётно.
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?