Олимпиадные задачи по теме «Ряды» для 9 класса - сложность 3 с решениями
Ряды
НазадНатуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями <i>d</i><sub>1</sub>, <i>d</i><sub>2</sub>, <i>d</i><sub>3</sub>, ... . Может ли случиться, что при этом сумма <sup>1</sup>/<sub><i>d</i><sub>1</sub></sub> + <sup>1</sup>/<sub><i>d</i><sub>2</sub></sub> + ... + <sup>1</sup>/<i><sub>d<sub>k</sub></sub></i> не превышает 0,9? Рассмотрите случаи:
а) общее число прогрессий конечно;
б) прогрессий бесконечное число (в этом случае условие нужно понимат...
Найдется ли такое <i>n</i>, при котором <img align="middle" src="/storage/problem-media/88296/problem_88296_img_2.gif" width="141" height="41"> ? А больше 1000?