Олимпиадные задачи по теме «Теория множеств» для 6 класса - сложность 3-5 с решениями

В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.

Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.

У Пети есть 12 одинаковых разноцветных вагончиков (некоторые, возможно, одного цвета, но неизвестно, сколько вагончиков какого цвета). Петя считает, что различных 12-вагонных поездов он сможет составить больше, чем 11-вагонных. Не ошибается ли Петя? (Поезда считаются одинаковыми, если в них на одних и тех же местах находятся вагончики одного и того же цвета.)

Сеть автобусных маршрутов в пригороде Амстердама устроена так, что:

  а) на каждом маршруте есть ровно три остановки;

  б) каждые два маршрута либо вовсе не имеют общих остановок, либо имеют только одну общую остановку.

Какое наибольшее количество маршрутов может быть в этом пригороде, если в нём всего 9 остановок?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка