Олимпиадные задачи по теме «Отношение порядка» для 11 класса - сложность 2 с решениями
Отношение порядка
НазадПусть <i>T</i><sub>α</sub>(<i>x, y, z</i>) ≥ <i>T</i><sub>β</sub>(<i>x, y, z</i>) для всех неотрицательных <i>x, y, z</i>. Докажите, что <img align="absmiddle" src="/storage/problem-media/61423/problem_61423_img_2.gif"> Определение многочленов <i>T</i><sub>α</sub> смотри в задаче <a href="https://mirolimp.ru/tasks/161417">161417</a>, про показатели смотри в <a href="https://problems.ru/thes.php?letter=4#diagramma_junga">справочнике</a>.
а) Диаграммы Юнга (4, 1, 1) и (3, 3, 0) не сравнимы, – ни одна из них не мажорирует другую. Есть ли еще такие несравнимые наборы с суммой 6? б) Найдите все несравнимые пары наборов для <i>s</i> = 7. Про диаграммы Юнга смотри <a href="https://problems.ru/thes.php?letter=4#diagramma_junga">здесь</a>.
Нарисуйте все лестницы из четырёх кирпичей в порядке убывания, начиная с самой крутой (4, 0, 0, 0) и заканчивая самой пологой (1, 1, 1, 1).
Докажите, что <img align="absmiddle" src="/storage/problem-media/61420/problem_61420_img_2.gif"> тогда и только тогда, когда β можно получить из α проделав несколько (может быть один раз или ни одного) операции вида <div align="CENTER">(<i>k, j, i</i>) ↔ (<i>k</i> – 1, <i>j</i> + 1, <i>i</i>), (<i>k, j, i</i>) ↔ (<i>k</i> – 1, <i>j, i</i> + 1), (<i>k, j, i</i>) ↔ (<i>k, j</i> – 1, <i>i</i> + 1). </div>(Эти операции можно представлять себе как сбрасывание одного кирпича вниз на диаграмме Юнга. Про диаграммы Юнга смотри <a href="https://problems.ru/thes.php?letter=4#diagramma_junga">зд...