Олимпиадные задачи по теме «Числа Каталана» для 9 класса - сложность 3 с решениями

На окружности расположены 20 точек. Эти 20 точек попарно соединяются 10 хордами, не имеющими общих концов и непересекающихся.

Сколькими способами это можно сделать?

При помощи <i>формулы Лежандра</i> (см. задачу <a href="https://mirolimp.ru/tasks/160553">160553</a>) докажите, что число   <img align="absmiddle" src="/storage/problem-media/60557/problem_60557_img_2.gif">   целое.

  а) Пусть  {<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>,..., <i>a<sub>n</sub></i>}  – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов

{<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>},  {<i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, <i>a</i><sub>1</sub>},  ...,  {<i>a<sub>n</sub></i>, <i>a</i><sub>1</sub>, ..., <i>a</i><sub><i>n</i>–1</sub>}  все частичные суммы (от начала до произвольного элемента) положит...

Сколько существует способов разрезать выпуклый (<i>n</i>+2)-угольник диагоналями на треугольники?

Сколько последовательностей  {<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>2<i>n</i></sub>},  состоящих из единиц и минус единиц, обладают тем свойством, что  <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a</i><sub>2<i>n</i></sub> = 0,  а все частичные суммы  <i>a</i><sub>1</sub>,  <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub>,  ...,  <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a</i><sub>2<i>n</i></sub>  неотрицательны?

На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка