Олимпиадные задачи по теме «Геометрия» для 1-4 класса - сложность 1-2 с решениями

У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?

И "бокал" (см. левый рисунок), и "рюмка" (см. правый рисунок) составлены из четырех спичек. Внутри каждого "сосуда"  — вишенка. Как нужно переместить "бокал" и "рюмку", переложив по две спички в каждом из них, чтобы вишенки оказались снаружи?<div align="center"><img src="/storage/problem-media/88185/problem_88185_img_2.gif"></div>

Разрежьте фигуру, показанную на рисунке, на четыре одинаковые части. <img align="center" src="/storage/problem-media/66508/problem_66508_img_2.png">

Квадрат со стороной 9 клеток разрезали по линиям сетки на 14 прямоугольников таким образом, что длина каждой стороны любого прямоугольника не меньше, чем две клетки. Могло ли оказаться так, что среди этих прямоугольников не было ни одного квадрата?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка