Олимпиадные задачи по теме «Проективная геометрия» для 4-8 класса - сложность 5 с решениями
Проективная геометрия
НазадДаны прямая <i>l</i>, окружность и точка <i>M</i>, лежащая на окружности и не лежащая на прямой <i>l</i>. Пусть<i>P</i><sub>M</sub> — проектирование прямой<i>l</i>на данную окружность из точки<i>M</i>(точка <i>X</i>прямой отображается в отличную от <i>M</i>точку пересечения прямой<i>XM</i>с окружностью),<i>R</i> — движение плоскости, сохраняющее данную окружность (т. е. поворот плоскости вокруг центра окружности или симметрия относительно диаметра). Докажите, что композиция<i>P</i><sub>M</sub><sup>-1</sup><tt>o</tt><i>R</i><tt>o</tt><i>P</i><sub>M</sub>является прое...
Даны прямая <i>l</i>, окружность и точки <i>M</i>,<i>N</i>, лежащие на окружности и не лежащие на прямой <i>l</i>. Рассмотрим отображение <i>P</i>прямой <i>l</i>на себя, являющееся композицией проектирования прямой <i>l</i>на данную окружность из точки <i>M</i>и проектирования окружности на прямую <i>l</i>из точки <i>N</i>. (Если точка <i>X</i>лежит на прямой <i>l</i>, то<i>P</i>(<i>X</i>) есть пересечение прямой<i>NY</i>с прямой <i>l</i>, где <i>Y</i> — отличная от <i>M</i>точка пересечения прямой<i>MX</i>с данной окружностью.) Докажите, что преобразование <i>...