Олимпиадные задачи по теме «Теория групп» для 8 класса - сложность 1-3 с решениями

Прямой угол разбит на бесконечное число квадратных клеток со стороной единица. Будем рассматривать ряды клеток, параллельные сторонам угла (<i>вертикальные</i> и <i>горизонтальные</i> ряды). Можно ли в каждую клетку записать натуральное число так, чтобы каждый вертикальный и каждый горизонтальный ряд клеток содержал все натуральные числа по одному разу?

В некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.

(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).

Нескольким детям дали по карандашу одного из трех цветов. Дети как-то поменялись карандашами, после чего у каждого оказался не тот карандаш, который был у него вначале. Докажите, что цвета карандашей могли быть такими, что у каждого вначале и в конце карандаши были разных цветов.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка