Назад

Олимпиадная задача по планиметрии и комбинаторной геометрии: покрытие линий

Задача

Доказать, что существует линия длины +1 , которую нельзя покрыть плоской выпуклой фигурой площади S .

Решение

Докажем, что такой линией является полуокружность. Выпуклая фигура, покрывающая полуокружность, должна содержать в себе полукруг, ограниченный данной полуокружностью, иначе фигура не будет выпуклой. Если возьмем полуокружность длиной , то площадь соответствующего полукруга будет S . Действительно, площадь полукруга равна π r2/2 , длина полуокружности =π r . Найдя из последнего равенства радиус данной полуокружности и подставив значение r2=2S/π в формулу для площади полукруга, получим наше утверждение. Таким образом, чтобы покрыть полуокружность большей длины, чем +1 , требуется фигура, имеющая площадь большую, чем S .

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет