Может ли последовательность замен в системе отрезков на плоскости быть бесконечной? Олимпиадная задача для 8-9 класса
Задача
На плоскости расположено такое конечное множество точек M, что никакие три точки не лежат на одной прямой. Некоторые точки соединены друг с другом отрезками так, что из каждой точки выходит не более одного отрезка. Разрешается заменить пару пересекающихся отрезков AB и CD парой противоположных сторон AC и BD четырёхугольника ACBD. В полученной системе отрезков разрешается снова произвести подобную замену, и т. д. Может ли последовательность таких замен быть бесконечной?
Решение
AC + BD < AB + CD (см. задачу 155162). Это означает, что на каждом шаге сумма длин имеющихся отрезков уменьшается. В то же время, всевозможных систем отрезков указанного вида конечное число (так как число точек конечно). Значит, сумма длин отрезков не может уменьшаться бесконечно долго.
Ответ
Не может.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь