Назад

Олимпиадная задача по планиметрии для 8-9 классов: прямая MI и треугольник ABC

Задача

В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём  KA = AC = CL.  Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC.

Решение

AI и CI – биссектрисы углов A и C. Пусть прямые AI и CK пересекаются в точке X, а прямые CI и AL – в точке Y. Поскольку треугольник KAC – равнобедренный  (AC = AK  по условию задачи), то его биссектриса AX является высотой. Значит, AX – высота треугольника AMC. Аналогично CY – высота этого треугольника. Итак, I – точка пересечения высот треугольника AMC. Следовательно,  MIAC.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет