Назад

Олимпиадная задача по теории графов: доказательство знакомства гостей за круглым столом

Задача

За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

Решение

  Заметим, что если у человека есть знакомые, сидящие рядом друг с другом (в частности, если он знаком со своим соседом), то этот человек знаком со всеми. Докажем, что такой гость найдётся.

  Пусть A и B – двое соседей. Если они не знакомы между собой, то их общий знакомый C знаком со всеми, так как его знакомые сидят без промежутков. В противном случае со всеми знаком человек A (по той же причине).

  Итак, пусть X – гость, знакомый со всеми. Тогда его соседи тоже знакомы со всеми, так как они знакомы с X (являющимся для них соседом). Соседи этих соседей также знакомы со всеми, и так далее по кругу.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет