Назад

Олимпиадная задача по математике: турнир футбольных команд, 6-8 класс

Задача

Пять футбольных команд провели турнир – каждая команда сыграла с каждой по разу. За победу начислялось 3 очка, за ничью – 1 очко, за проигрыш очков не давалось. Четыре команды набрали соответственно 1, 2, 5 и 7 очков. А сколько очков набрала пятая команда?

Решение

  Каждая команда провела 4 игры. Ясно, что первая команда один раз сыграла вничью, а остальные игры проиграла. Вторая имеет две ничьи и два поражения. Третья команда пять очков на одних ничьих набрать не могла, стало быть, она один раз выиграла, кроме того, у неё две ничьи и поражение. Четвёртая команда победила дважды (иначе она набрала бы не более 6 очков). Также у этой команды есть ничья и поражение. В итоге первые четыре команды выиграли 3 раза, а проиграли 7 раз. Однако число побед должно равняться числу поражений. Значит, 4 раза они проиграли пятой команде, и у той 12 очков.

  Пример турнира с таким распределением очков: пятая команда выиграла у всех, четвёртая – у первой и второй, третья – у первой, а все остальные игры закончились вничью.

Ответ

12 очков.

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет