Назад

Олимпиадная задача по теории чисел и стереометрии: параллелепипед 11×12×13

Задача

В нашем распоряжении имеются "кирпичи", имеющие форму, которая получается следующим образом: приклеиваем к одному единичному кубу по трём его граням, имеющим общую вершину, ещё три единичных куба, так что склеиваемые грани полностью совпадают. Можно ли сложить прямоугольный параллелепипед 11×12×13 из таких "кирпичей"?

Решение

Допустим, что нам удалось сложить параллелепипед из "кирпичей". Раскрасим получившийся параллелепипед в два цвета в шахматном порядке. Ровно половина кубиков окажется окрашена в белый цвет.  11·12·13 : 2  – чётное число. С другой стороны, в каждом "кирпиче", из которых составлен параллелепипед, либо один, либо три белых кубика. Самих "кирпичей" тоже нечётное число  (11·12 : 4),  поэтому всего белых кубиков – нечётное число, что противоречит полученному ранее результату.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет