Задача
Докажите, что в любом графе
а) сумма степеней всех вершин равна удвоенному числу рёбер (и следовательно, чётна);
б) число вершин нечётной степени чётно.
Решение
а) При сложении степеней вершин каждое ребро учитывается дважды: по разу для каждой из вершин, которые оно соединяет. б) Сразу следует из а) и того очевидного факта, что сумма нечётного числа нечётных чисел нечётна.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет