Назад
Задача

На доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат.

Решение

Трапеция – не параллелограмм. Поэтому, если Петя прав, то на доске нарисовано не больше одного параллелограмма, и Вася с Колей оба неправы. Но по условию неправду сказал только один человек. Следовательно, это Петя, а Вася и Коля сказали правду. Это значит, что по крайней мере один из трёх нарисованных на доске четырёхугольников одновременно является прямоугольником и ромбом, то есть квадратом.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет