Назад
Задача

На стороне AC треугольника ABC произвольно выбрана точка D. Касательная, проведённая в точке D к описанной окружности треугольника BDC, пересекает сторону AB в точке C1; аналогично определяется точка A1. Докажите, что  A1C1 || AC.

Решение

Из условия следует, что  ∠C1DA = ∠DBC  и  ∠A1DC = ∠DBA  (см. рис.). Следовательно, четырёхугольник A1BC1D – вписанный, то есть

C1A1D = ∠C1BD = ∠CDA1.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет