Задача
Взаимно перпендикулярные прямые l и m пересекаются в точке P окружности так, что они разбивают окружность на три дуги. Отметим на каждой дуге такую точку, что проведённая через неё касательная к окружности пересекается с прямыми l и m в точках равноотстоящих от точки касания. Докажите, что три отмеченные точки являются вершинами равностороннего треугольника.
Решение
Пусть A и B – точки пересечения прямых l и m с данной окружностью, дуга PA равна 3α, прямая n – касательная в точке R, а K, L – точки пересечения n с l и m соответственно (см. рис.).

Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет