Задача
Докажите, что произведение цифр любого натурального числа, большего 9, меньше самого числа.
Решение
Пусть число N записывается в десятичной записи цифрами a0, a1, a2, ..., an, n>0. Тогда произведение цифр числа N равно P = a0a1a2...an, что меньше a0*10n, так как каждая из цифр a1, a2, ..., anменьше 10. Число a0*10nимеет в десятичной записи цифру a0и n нулей, следующих за ней. Поэтому a0*10nне больше, чем N.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет