Олимпиадные задачи по математике для 9-10 класса - сложность 2 с решениями
Дана последовательность $a_n = n!\mkern2mu(n^2-2025n+1)$ для всех натуральных $n$. Найдите сумму первых $2025$ членов этой последовательности.
Дана последовательность $a_n = n!\mkern2mu(n^2-2025n+1)$ для всех натуральных $n$. Найдите сумму первых $2025$ членов этой последовательности.