Олимпиадные задачи по математике для 1-8 класса - сложность 3 с решениями

Даны окружность $\omega$ и точки $A$ и $B$ на ней. Пусть $C$ – произвольная точка на одной из дуг $AB$ этой окружности, $CL$ – биссектриса треугольника $ABC$, окружность $BCL$ пересекает $AC$ в $E$, а $CL$ пересекает $BE$ в $F$. Найдите геометрическое место центров окружностей $AFC$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка