Олимпиадные задачи по математике для 9-11 класса - сложность 4 с решениями
Вписанная окружность $\omega$ прямоугольного треугольника $ABC$ касается окружности, проходящей через середины его сторон, в точке $F$. Из середины $O$ гипотенузы $AB$ проведена касательная $OE$ к $\omega$, отличная от $AB$. Докажите, что $CE=CF$.
Треугольник $ABC$ вписан в окружность $\omega$. Точка $T$ на прямой $BC$ выбрана так, что прямая $AT$ касается $\omega$. Биссектриса угла $BAC$ пересекает отрезок $BC$ в точке $L$, а окружность $\omega$ в точке $A_0$. Прямая $TA_0$ пересекает $\omega$ в точке $P$. Точка $K$ на отрезке $BC$ такова, что $BL=CK$. Докажите, что $\angle BAP=\angle CAK$.