Олимпиадные задачи по математике для 11 класса - сложность 4-5 с решениями
Назовём тройку чисел<i>триплетом</i>, если одно из них равно среднему арифметическому двух других. Дана бесконечная последовательность $(a_n)$, состоящая из натуральных чисел. Известно, что $a_1=a_2=1$ и при $n > 2$ число $a_n$ — минимальное натуральное число такое, что среди чисел $a_1,a_2,\ldots,a_n$ нет трёх, образующих триплет. Докажите, что $a_n\leqslant \frac{n^2+7}{8}$ для любого $n$.