Олимпиадные задачи по математике для 1-8 класса - сложность 3 с решениями

Дано натуральное число $n$. Можно ли представить многочлен $x(x-1)\dots(x-n)$ в виде суммы двух кубов многочленов с действительными коэффициентами?

В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка