Олимпиадные задачи по математике для 9 класса - сложность 1-3 с решениями

Хозяйка достала кусок мяса из холодильника, вокруг неё собрались котята. Раз в минуту хозяйка отрезает кусочек мяса и скармливает его одному из котят (на свой выбор), причём каждый кусочек должен составлять одну и ту же долю куска, от которого его отрезают. Через некоторое время хозяйка убирает остаток мяса в холодильник. Может ли хозяйка скормить котятам поровну мяса, если всего котят а) двое; б) трое?

У хозяйки есть кусок мяса, которым она хочет накормить трёх котиков. Раз в несколько секунд хозяйка отрезает кусочек мяса и скармливает его одному из котиков на свой выбор, причём каждый кусочек должен составлять одну и ту же долю куска, от которого его отрезают. Через некоторое время хозяйка убирает остаток мяса в холодильник. Может ли она скормить котикам поровну мяса?

На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется<i>неудачной</i>, если для каждого натурального $k$ от 1 до 99 сумма чисел на верхних $k$ карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить?

Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.

Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны. <img src="/storage/problem-media/67022/problem_67022_img_2.png">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка