Олимпиадные задачи по математике для 6-9 класса

Дан вписанный пятиугольник $APBCQ$. Точка $M$ внутри треугольника $ABC$ такова, что $\angle MAB=\angle MCA$, $\angle MAC=\angle MBA$ и $\angle PMB=\angle QMC=90^{\circ}$. Докажите, что прямые $AM$, $BP$ и $CQ$ пересекаются в одной точке.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка