Олимпиадные задачи по математике для 3-8 класса - сложность 3 с решениями
Клетчатую доску $20\times 20$ разбили на двухклеточные доминошки. Докажите, что некоторая прямая содержит центры хотя бы десяти из этих доминошек.
В квадратном листе бумаги площади $1$ проделали дыру в форме треугольника (вершины дыры не выходят на границу листа). Докажите, что из оставшейся бумаги можно вырезать треугольник площади $\frac16$.
Дан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.
Верно ли, что из любого выпуклого четырёхугольника можно вырезать три уменьшенные вдвое копии этого четырёхугольника?