Олимпиадные задачи по математике для 5-11 класса - сложность 2 с решениями

На доске написаны два натуральных числа, одно из которых получается из другого перестановкой цифр. Может ли их разность равняться $2025$? (Запись натурального числа не может начинаться с нуля.)

Любое число $x$, написанное на доске, разрешается заменить либо на  3$x$ + 1,  либо на  [<sup><i>x</i></sup>/<sub>2</sub>].

Докажите, что если вначале написано число 1, то такими операциями можно получить любое натуральное число.

Из шести палочек попарно различной длины сложены два треугольника (по три палочки в каждом). Всегда ли можно сложить из них один треугольник, стороны которого состоят из одной, двух и трех палочек соответственно?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка