Олимпиадные задачи по математике для 10-11 класса

Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.

В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$.

В треугольнике <i>ABC</i> проведены высоты <i>AH</i><sub>1</sub>, <i>BH</i><sub>2</sub> и <i>CH</i><sub>3</sub>. Точка <i>M</i> – середина отрезка <i>H</i><sub>2</sub><i>H</i><sub>3</sub>. Прямая <i>AM</i> пересекает отрезок <i>H</i><sub>2</sub><i>H</i><sub>1</sub> в точке <i>K</i>.

Докажите, что точка <i>K</i> принадлежит средней линии треугольника <i>ABC</i>, параллельной <i>AC</i>.

На стороне <i>BC</i> треугольника <i>ABC</i> взята произвольная точка <i>D</i>. Через <i>D</i> и <i>A</i> проведены окружности ω<sub>1</sub> и ω<sub>2</sub> так, что прямая <i>BA</i> касается ω<sub>1</sub>, прямая <i>CA</i> касается ω<sub>2</sub>. <i>BX</i> – вторая касательная, проведённая из точки <i>B</i> к окружности ω<sub>1</sub>, <i>CY</i> – вторая касательная, проведённая из точки <i>C</i> к окружности ω<sub>2</sub>. Докажите, что описанная окружность треугольника <i>XDY</i> касается прямой <i>BC</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка