Олимпиадные задачи по математике для 8-11 класса - сложность 2 с решениями
Про натуральные числа $x$, $y$ и $z$ известно, что $\operatorname{НОД}(x,y,z) = 1$ и $x^2+y^2+z^2=2(xy+yz+zx)$. Докажите, что $x$, $y$ и $z$ – квадраты натуральных чисел.
Про натуральные числа $x$, $y$ и $z$ известно, что $\operatorname{НОД}(x,y,z) = 1$ и $x^2+y^2+z^2=2(xy+yz+zx)$. Докажите, что $x$, $y$ и $z$ – квадраты натуральных чисел.