Олимпиадные задачи по математике - сложность 5 с решениями
Дан тетраэдр $ABCD$. Прямая $\ell$ пересекает плоскости $ABC$, $BCD$, $CDA$, $DAB$ в точках $D_0$, $A_0$, $B_0$, $C_0$ соответственно. Пусть $P$ – произвольная точка, не лежащая на прямой $\ell$ и в плоскостях граней тетраэдра, а $A_1$, $B_1$, $C_1$, $D_1$ – вторые точки пересечения прямых $PA_0$, $PB_0$, $PC_0$, $PD_0$ со сферами $PBCD$, $PCDA$, $PDAB$, $PABC$ соответственно. Докажите, что $P$, $A_1$, $B_1$, $C_1$, $D_1$ лежат на одной окружности.