Олимпиадные задачи по математике для 11 класса - сложность 2 с решениями

По кругу лежит  $2n + 1$  монета орлом вверх. Двигаясь по часовой стрелке, делают  $2n + 1$  переворот: переворачивают какую-то монету, одну монету пропускают и переворачивают следующую, две монеты пропускают и переворачивают следующую, три монеты пропускают и переворачивают следующую, и т.д., наконец пропускают 2n монет и переворачивают следующую. Докажите, что теперь ровно одна монета лежит решкой вверх.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка