Олимпиадные задачи по математике для 7 класса - сложность 3-4 с решениями
Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой.
Вокруг круглого озера через равные промежутки растут 2019 деревьев: 1009 сосен и 1010 ёлок. Докажите, что обязательно найдется дерево, рядом с которым растёт сосна и с другой стороны от которого через одно дерево тоже растёт сосна.
У Вики есть четыре фигурки, у Алины есть квадрат, а у Полины есть квадрат другого размера. Объединившись, Алина и Вика могут сложить квадрат, используя все свои пять фигурок. Может ли оказаться так, что Полина и Вика также смогут сложить квадрат, используя все свои пять фигурок? (Квадраты складываются без просветов и наложений.)
Разрежьте фигуру на двенадцать одинаковых частей. <div align="center"><img src="/storage/problem-media/65975/problem_65975_img_2.gif"></div>
Петя записал 25 чисел в клетки квадрата 5×5. Известно, что их сумма равна 500. Вася может попросить его назвать сумму чисел в любой клетке и всех её соседях по стороне. Может ли Вася за несколько таких вопросов узнать, какое число записано в центральной клетке?
Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее.<div align="center"><img src="/storage/problem-media/64578/problem_64578_img_2.gif"></div>