Олимпиадные задачи по математике для 3-7 класса

Два игрока по очереди проводят диагонали в правильном (2<i>n+</i>1)-угольнике  (<i>n</i> > 1).  Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка