Олимпиадные задачи по математике для 4-8 класса - сложность 4 с решениями

В ряд слева направо стоят $N$ коробок, занумерованных подряд числами $1$, $2, \ldots, N$. В некоторые коробки, стоящие подряд, положат по шарику, оставив остальные пустыми. Инструкция состоит из последовательно выполняемых команд вида «поменять местами содержимое коробок № $i$ и № $j$», где $i$ и $j$ – числа. Для каждого ли $N$ существует инструкция, в которой не больше $100N$ команд, со свойством: для любой начальной раскладки указанного вида можно будет, вычеркнув из инструкции некоторые команды, получить инструкцию, после выполнения которой все коробки с шариками будут левее коробок без шариков?

На числовой оси отмечено бесконечно много точек с натуральными координатами. Когда по оси катится колесо, каждая отмеченная точка, по которой проехало колесо, оставляет на нём точечный след. Докажите, что можно выбрать такое действительное $R$, что если прокатить по оси, начиная из нуля, колесо радиуса $R$, то на каждой дуге колеса величиной в $1^\circ$ будет след хотя бы одной отмеченной точки.

Король решил поощрить группу из $n$ мудрецов. Их поставят в ряд друг за другом (чтобы все смотрели в одном направлении), на каждого наденут чёрную или белую шляпу. Каждый будет видеть шляпы всех впереди стоящих. Мудрецы по очереди (от последнего к первому) назовут цвет (белый или чёрный) и натуральное число по своему выбору. В конце подсчитывается число мудрецов, которые назвали цвет, совпадающий с цветом своей шляпы: ровно столько дней всей группе будут платить надбавку к жалованью. Мудрецам разрешили договориться заранее, как отвечать. При этом мудрецы знают, что ровно $k$ из них безумны (кто именно – им неизвестно). Безумный мудрец называет белый или чёрный цвет и число вне зависимости от договорённостей. Какое максимальное число дней с надбавкой к жалованью могут гарантировать группе м...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка