Олимпиадные задачи по математике - сложность 3 с решениями

Назовём <i>крокодилом</i> шахматную фигуру, ход которой заключается в прыжке на <i>m</i> клеток по вертикали или по горизонтали, и потом на <i>n</i> клеток в перпендикулярном направлении. Докажите что для любых <i>m</i> и <i>n</i> можно так раскрасить бесконечную клетчатую доску в два цвета (для каждых конкретных <i>m</i> и <i>n</i> своя раскраска), что каждые две клетки, соединённые одним ходом крокодила, будут покрашены в разные цвета.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка