Олимпиадные задачи по математике для 11 класса - сложность 2-4 с решениями
Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых десяти последовательных цифрах поменять местами первые пять с пятью следующими. Два таких числа называются<i>похожими</i>, если одно из них получается из другого несколькими такими операциями. Какое наибольшее количество попарно непохожих чисел можно выбрать?
Назовём натуральное число хорошим, если в его десятичной записи встречаются подряд цифры 1, 9,<nobr>7, 3,</nobr>и<nobr>плохим —</nobr>в противном случае. (Например, число<nobr>197 639 917 —</nobr>плохое, а<nobr>116 519 732 —</nobr>хорошее.) Докажите, что существует такое натуральное<nobr>число <i>n</i>,</nobr>что среди всех<i>n</i>-значных чисел<nobr>(от 10<sup><i>n</i> – 1</sup></nobr>до<nobr>10<sup><i>n</i></sup> – 1)</nobr>больше хороших, чем плохих.Постарайтесь найти возможно меньшее <nobr>такое <i>n</i>.</nobr>