Олимпиадные задачи по математике для 8-9 класса
Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а подготовленная кладётся в её конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите а) наименьшее такое число, б) все такие числа.
В таблице размера <i>n×n</i> клеток: две противоположные угловые клетки – чёрные, а остальные – белые. Какое наименьшее количество белых клеток достаточно перекрасить в чёрный цвет, чтобы после этого с помощью преобразований, состоящих в перекрашивании всех клеток какого-либо столбца или какой-либо строки в противоположный цвет, можно было сделать чёрными все клетки таблицы?
Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел <i>a, b, c, d</i> произведение чисел <i>a – d</i> и <i>b – c</i> отрицательно, то числа <i>b</i> и <i>c</i> можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.