Олимпиадные задачи по математике для 10 класса

В какое наименьшее число цветов нужно раскрасить клетки бесконечного листа клетчатой бумаги, чтобы

  а) каждые две клетки на расстоянии 6 были покрашены в разные цвета?   б) каждые четыре клетки, образующие фигуру формы буквы Г, были покрашены в четыре разных цвета? (Расстояние между клетками – наименьшее число линий сетки, горизонтальных и вертикальных, которые должна пересечь ладья на пути из одной клетки в другую.)

Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?

На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка