Олимпиадные задачи по математике для 11 класса - сложность 2 с решениями

Через вершину <i>А</i> остроугольного треугольника <i>АВС</i> проведены касательная <i>АК</i> к его описанной окружности, а также биссектрисы <i>АN</i> и <i>AM</i> внутреннего и внешнего углов при вершине <i>А</i> (точки <i>М, K</i> и <i>N</i> лежат на прямой <i>ВС</i>). Докажите, что  <i>MK = KN</i>.

В треугольнике <i>ABC</i> проведены высота <i>AH</i> и биссектриса <i>BE</i>. Известно, что угол <i>BEA</i> равен 45°. Докажите, что угол <i>EHC</i> равен 45°.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка